DragonFire Core SDK Documentation
Overview
The DragonFire Core SDK provides direct access to the fundamental components of the DragonFire ecosystem. This SDK serves as the foundation for interacting with DragonFire's advanced mathematical and geometric computing infrastructure.
Key Features
- Direct access to the DragonFire Kernel for fractal execution and processing
- Integration with the distributed Cache system for millisecond-level synchronization
- Utilization of DragonHeart's harmonic processing capabilities
- Access to zero-latency geometric compute nodes via DragonCube
- Interface with the holographic system shell through DragonXOS
- Seamless integration with Dragon Wallets for secure identity and transactions
Installation
Install the DragonFire Core SDK using your preferred package manager:
npm install @dragonfire/core-sdk
yarn add @dragonfire/core-sdk
Or include it directly in your HTML:
<script src="https://cdn.dragonfire.ai/sdk/core-sdk-1.2.0.js"></script>
Initialization
To use the Core SDK, you first need to initialize it with your API credentials:
import { DragonFireCore } from '@dragonfire/core-sdk';
// Initialize the core SDK
const core = new DragonFireCore({
apiKey: 'YOUR_API_KEY',
region: 'us-west',
securityLevel: 'high',
logLevel: 'error',
timeout: 30000
});
// Connect to DragonFire services
await core.connect();
Configuration Options
Parameter | Type | Default | Description |
---|---|---|---|
apiKey | string | Required | Your DragonFire API key |
region | string | 'us-west' | Server region ('us-west', 'us-east', 'eu', 'asia') |
securityLevel | string | 'standard' | Security level ('standard', 'high', 'maximum') |
logLevel | string | 'error' | Logging level ('debug', 'info', 'warn', 'error') |
timeout | number | 30000 | Request timeout in milliseconds |
retryStrategy | object | { maxRetries: 3, initialDelay: 300, maxDelay: 3000 } | Retry strategy configuration |
Core Components
The DragonFire Core SDK provides access to several fundamental components that form the foundation of the DragonFire ecosystem:
Kernel
The fractal execution layer that powers all DragonFire services, providing optimized mathematical processing pathways.
Learn MoreCache
Millisecond-level distributed memory synchronization system for ultra-low latency data access across services.
Learn MoreDragonHeart
Harmonic processing engine utilizing fundamental mathematical constants (Pi, Phi, √2, √3) for optimized computation.
Learn MoreDragonCube
Zero-latency geometric compute node with 3x3x3 cube architecture and 7-dimensional center state vectors.
Learn MoreDragonXOS
Holographic system shell that coordinates all DragonFire components and provides a unified interface.
Learn MoreKernel
The DragonFire Kernel is the fractal execution layer that powers all DragonFire services. It provides optimized mathematical processing pathways using phi-resonant patterns.
// Access the Kernel
const kernel = core.kernel;
// Execute a fractal operation
const result = await kernel.execute({
pattern: 'phi', // Mathematical pattern (phi, pi, sqrt2, sqrt3, e)
dimensions: 7, // Processing dimensions (3-13)
operation: 'transform', // Operation type
data: [1, 1, 2, 3, 5, 8, 13], // Input data
options: {
precision: 'high', // Processing precision
optimizationLevel: 'maximum', // Optimization level
returnFormat: 'array' // Return format
}
});
// Process data streams
const stream = kernel.createStream({
pattern: 'phi',
dimensions: 7,
continuousProcessing: true
});
stream.on('data', (processedData) => {
console.log('Processed data:', processedData);
});
stream.write([1, 1, 2, 3, 5]);
stream.write([8, 13, 21, 34, 55]);
// Close the stream when done
stream.end();
Mathematical Patterns
The Kernel supports several mathematical patterns for optimized processing:
- phi: Golden Ratio (φ = 1.618...) - Optimal for balanced operations
- pi: Pi (π = 3.14159...) - Best for circular and cyclical data
- sqrt2: Square Root of 2 (√2 = 1.414...) - Optimal for binary operations
- sqrt3: Square Root of 3 (√3 = 1.732...) - Optimal for triangular operations
- e: Euler's Number (e = 2.718...) - Best for exponential growth calculations
For detailed information on Kernel functions and capabilities, see the complete Kernel documentation.
Cache
The DragonFire Cache provides millisecond-level distributed memory synchronization across services. It enables ultra-low latency data access with fractal-optimized storage patterns.
// Access the Cache
const cache = core.cache;
// Store data in cache
await cache.set('user_profile_123', {
name: 'Alice',
preferences: { theme: 'dark', language: 'en' }
}, {
ttl: 3600, // Time-to-live in seconds
pattern: 'fractal', // Storage pattern (fractal, linear, network)
priority: 'high', // Cache priority
sync: true // Synchronize across nodes
});
// Retrieve data from cache
const userData = await cache.get('user_profile_123');
// Store multiple items
await cache.mset([
{ key: 'key1', value: 'value1', ttl: 3600 },
{ key: 'key2', value: 'value2', ttl: 7200 }
], { pattern: 'fractal' });
// Retrieve multiple items
const multiData = await cache.mget(['key1', 'key2']);
// Delete cache item
await cache.delete('user_profile_123');
// Clear cache region
await cache.clear({ pattern: 'user_*' });
Cache Patterns
The Cache supports different storage patterns for optimized data access:
- fractal: Recursive pattern with geometric optimization (default)
- linear: Traditional key-value storage
- network: Graph-based storage for relational data
- temporal: Time-optimized storage for sequential data
For detailed information on Cache functions and capabilities, see the complete Cache documentation.
DragonHeart
DragonHeart is a harmonic processing engine that utilizes fundamental mathematical constants (Pi, Phi, √2, √3) for optimized computation. It enables advanced pattern recognition and transformation capabilities.
// Access DragonHeart
const heart = core.heart;
// Process data with harmonic patterns
const harmonicResult = await heart.process({
sequence: [1, 1, 2, 3, 5, 8, 13], // Input sequence
pattern: 'fibonacci', // Sequence pattern
resonance: 'phi', // Resonance pattern
dimensions: 7, // Processing dimensions
options: {
precision: 'maximum', // Processing precision
iterationLimit: 100, // Maximum iterations
convergenceTolerance: 0.0001 // Convergence tolerance
}
});
// Find pattern resonance
const resonanceResult = await heart.findResonance({
data: [1.2, 3.5, 8.1, 14.7, 21.3],
patterns: ['phi', 'pi', 'sqrt2', 'sqrt3', 'e'],
threshold: 0.85
});
// Transform data using harmonic mapping
const transformedData = await heart.transform({
source: sourceData,
sourcePattern: 'logarithmic',
targetPattern: 'exponential',
harmonicBase: 'phi'
});
Harmonic Processing
DragonHeart excels at identifying and working with mathematical patterns in data:
- Pattern Recognition: Identifies underlying mathematical patterns in data
- Harmonic Transformation: Converts between different mathematical representations
- Phi-Resonant Processing: Optimizes calculations using golden ratio relationships
- Multi-Dimensional Analysis: Processes data across multiple mathematical dimensions
For detailed information on DragonHeart functions and capabilities, see the complete DragonHeart documentation.
DragonCube
DragonCube provides zero-latency geometric compute nodes with a 3x3x3 cube architecture and 7-dimensional center state vectors. It enables high-performance geometric calculations and transformations.
// Access DragonCube
const cube = core.cube;
// Initialize a compute cube
const computeCube = await cube.initialize({
dimensions: 3, // Physical cube dimensions
centerDimensions: 7, // Center state vector dimensions
optimizationPattern: 'phi', // Optimization pattern
architecture: 'octahedral' // Computation architecture
});
// Execute a geometric operation
const result = await computeCube.execute({
operation: 'transform',
input: inputData,
transformationType: 'jitterbug',
parameters: {
rotationAngle: Math.PI / 4,
scaling: 1.5,
iterations: 3
}
});
// Perform a dimensional mapping
const mappedData = await computeCube.mapDimensions({
sourceData: sourceData,
sourceDimensions: 3,
targetDimensions: 7,
mappingFunction: 'harmonic'
});
// Close the compute cube when done
await computeCube.close();
Geometric Architectures
DragonCube supports multiple geometric computation architectures:
- octahedral: 8 triangular faces with harmonic relationships
- tetrahedral: 4-point system with balanced processing
- icosahedral: 20-face system with high geometric precision
- dodecahedral: 12-face phi-based system for harmonic processing
For detailed information on DragonCube functions and capabilities, see the complete DragonCube documentation.
DragonXOS
DragonXOS is the holographic system shell that coordinates all DragonFire components and provides a unified interface. It manages system resources, component communication, and operation scheduling.
// Access DragonXOS
const xos = core.xos;
// Get system status
const systemStatus = await xos.getSystemStatus();
console.log('System status:', systemStatus);
// Register a component
await xos.registerComponent({
id: 'custom-processor',
type: 'processor',
capabilities: ['transform', 'analyze'],
resources: {
memory: '256MB',
cpu: 0.5
}
});
// Create a processing flow
const flow = await xos.createFlow({
name: 'data-processing-flow',
steps: [
{ component: 'input', operation: 'read', output: 'raw-data' },
{ component: 'kernel', operation: 'process', input: 'raw-data', output: 'processed-data' },
{ component: 'custom-processor', operation: 'transform', input: 'processed-data', output: 'final-result' }
],
options: {
parallelExecution: true,
optimizationLevel: 'high'
}
});
// Execute the flow
const result = await flow.execute({
inputData: sourceData,
parameters: {
transformType: 'geometric',
precision: 'high'
}
});
// Get system metrics
const metrics = await xos.getMetrics({
components: ['kernel', 'cache', 'heart'],
timeRange: '1h',
resolution: '1m'
});
System Management
DragonXOS provides comprehensive system management capabilities:
- Component Coordination: Manages communication between all DragonFire components
- Resource Allocation: Optimizes resource distribution based on workload
- Flow Creation: Enables creation of multi-step processing pipelines
- Metrics and Monitoring: Provides detailed insights into system performance
For detailed information on DragonXOS functions and capabilities, see the complete DragonXOS documentation.
Wallet Integration
The Core SDK provides seamless integration with Dragon Wallets for secure identity management and financial transactions.
import { DragonFireCore } from '@dragonfire/core-sdk';
import { WalletClient } from '@dragonfire/wallet-client';
// Initialize the core SDK
const core = new DragonFireCore({
apiKey: 'YOUR_API_KEY',
region: 'us-west'
});
await core.connect();
// Initialize the wallet client with core
const wallet = new WalletClient(core, {
securityLevel: 'high',
vectorDimension: 7
});
// Create a wallet
const walletInfo = await wallet.createWallet({
name: 'Primary Wallet',
attributes: { purpose: 'development' }
});
// Execute a wallet operation through core
const transactionResult = await core.executeWalletOperation({
operation: 'transfer',
walletId: walletInfo.id,
parameters: {
recipient: 'recipient-wallet-id',
amount: 100,
currency: 'USD',
memo: 'Test transfer'
}
});
Core-Wallet Integration Benefits
Integrating wallets through the Core SDK provides several advantages:
- Optimized Routing: Transactions use geometry-optimized pathways
- Enhanced Security: Core security protocols protect wallet operations
- Performance Boost: Direct access to low-level compute resources
- Unified Authentication: Single authentication flow for all services
For detailed information on wallet integration, see the complete Wallet Integration documentation.
Error Handling
The Core SDK provides a comprehensive error handling system that helps identify and resolve issues during operation.
try {
// Attempt a core operation
const result = await core.kernel.execute({
pattern: 'phi',
dimensions: 7,
operation: 'transform',
data: inputData
});
} catch (error) {
// Handle specific error types
if (error.code === 'KERNEL_EXECUTION_ERROR') {
console.error('Kernel execution failed:', error.message);
console.error('Operation:', error.details.operation);
console.error('Pattern:', error.details.pattern);
// Attempt recovery with alternative pattern
try {
const recoveryResult = await core.kernel.execute({
pattern: 'pi', // Try alternative pattern
dimensions: 7,
operation: 'transform',
data: inputData
});
console.log('Recovery successful with pi pattern');
} catch (recoveryError) {
console.error('Recovery failed:', recoveryError.message);
}
} else if (error.code === 'CONNECTION_ERROR') {
console.error('Connection issue:', error.message);
await core.reconnect();
} else {
console.error('Unknown error:', error);
}
}
Common Error Codes
Error Code | Description | Recommended Action |
---|---|---|
AUTH_FAILED | Authentication failed due to invalid API key | Verify API key and permissions |
CONNECTION_ERROR | Unable to establish connection to DragonFire services | Check network connection and try reconnecting |
KERNEL_EXECUTION_ERROR | Error executing operation in the Kernel | Verify input data and operation parameters |
CACHE_OPERATION_FAILED | Cache operation failed | Check cache key and value format |
HEART_PROCESSING_ERROR | Error during DragonHeart processing | Verify sequence data and pattern compatibility |
CUBE_INITIALIZATION_ERROR | Error initializing DragonCube | Check dimension parameters and availability |
XOS_COMPONENT_ERROR | Error with DragonXOS component operation | Verify component registration and resources |
WALLET_OPERATION_FAILED | Wallet operation failed | Check wallet credentials and parameters |
Code Examples
Basic Data Processing
import { DragonFireCore } from '@dragonfire/core-sdk';
async function processData() {
// Initialize the core SDK
const core = new DragonFireCore({
apiKey: 'YOUR_API_KEY',
region: 'us-west'
});
await core.connect();
// Prepare sample data
const sampleData = [1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
// Process with Kernel
const kernelResult = await core.kernel.execute({
pattern: 'phi',
dimensions: 7,
operation: 'transform',
data: sampleData
});
console.log('Kernel processing result:', kernelResult);
// Store in Cache
await core.cache.set('fibonacci-sequence', sampleData, {
ttl: 3600,
pattern: 'fractal'
});
console.log('Data stored in cache');
// Process with DragonHeart
const heartResult = await core.heart.process({
sequence: sampleData,
pattern: 'fibonacci',
resonance: 'phi'
});
console.log('Heart processing result:', heartResult);
// Disconnect when done
await core.disconnect();
}
processData().catch(console.error);
Multi-Component Workflow
import { DragonFireCore } from '@dragonfire/core-sdk';
async function runComplexWorkflow(inputData) {
// Initialize the core SDK
const core = new DragonFireCore({
apiKey: 'YOUR_API_KEY',
region: 'us-west'
});
await core.connect();
try {
// Step 1: Initialize a DragonCube
const computeCube = await core.cube.initialize({
dimensions: 3,
centerDimensions: 7,
optimizationPattern: 'phi'
});
// Step 2: Transform input data geometrically
const transformedData = await computeCube.execute({
operation: 'transform',
input: inputData,
transformationType: 'jitterbug'
});
// Step 3: Cache the intermediate result
await core.cache.set('workflow-intermediate', transformedData, {
ttl: 1800,
pattern: 'fractal'
});
// Step 4: Process with DragonHeart
const processedData = await core.heart.process({
sequence: transformedData,
pattern: 'harmonic',
resonance: 'phi'
});
// Step 5: Create a system flow with DragonXOS
const flow = await core.xos.createFlow({
name: 'final-processing-flow',
steps: [
{ component: 'input', operation: 'read', output: 'raw-data' },
{ component: 'processor', operation: 'analyze', input: 'raw-data', output: 'analyzed-data' },
{ component: 'output', operation: 'format', input: 'analyzed-data', output: 'final-result' }
]
});
// Step 6: Execute the flow with the processed data
const finalResult = await flow.execute({
inputData: processedData,
parameters: {
precision: 'high',
outputFormat: 'structured'
}
});
// Close resources
await computeCube.close();
return finalResult;
} catch (error) {
console.error('Workflow error:', error);
throw error;
} finally {
// Ensure proper disconnection
await core.disconnect();
}
}
// Example usage
const sampleData = [
[1, 2, 3],
[4, 5, 6],
[7, 8, 9]
];
runComplexWorkflow(sampleData)
.then(result => console.log('Workflow completed:', result))
.catch(error => console.error('Workflow failed:', error));
Wallet Integration Example
import { DragonFireCore } from '@dragonfire/core-sdk';
import { WalletClient } from '@dragonfire/wallet-client';
async function integratedWalletExample() {
// Initialize the core SDK
const core = new DragonFireCore({
apiKey: 'YOUR_API_KEY',
region: 'us-west'
});
await core.connect();
// Initialize wallet client with core
const wallet = new WalletClient(core, {
securityLevel: 'high',
vectorDimension: 7
});
try {
// Create or load a wallet
let userWallet;
try {
userWallet = await wallet.loadWallet('existing-wallet-id');
console.log('Loaded existing wallet:', userWallet.id);
} catch (error) {
userWallet = await wallet.createWallet({
name: 'New Integrated Wallet',
attributes: { purpose: 'demonstration' }
});
console.log('Created new wallet:', userWallet.id);
}
// Process data with kernel
const dataToProcess = [1, 1, 2, 3, 5, 8, 13];
const processedData = await core.kernel.execute({
pattern: 'phi',
dimensions: 7,
operation: 'transform',
data: dataToProcess
});
// Store processed result in cache
const cacheKey = `wallet:${userWallet.id}:processed-data`;
await core.cache.set(cacheKey, processedData, {
ttl: 3600,
pattern: 'fractal'
});
// Create a transaction record
const transactionResult = await wallet.createTransaction({
recipient: 'recipient-wallet-id',
amount: processedData[0], // Use processed data in transaction
currency: 'USD',
memo: 'Integrated workflow transaction'
});
// Store transaction in DragonXOS flow
const flow = await core.xos.createFlow({
name: 'transaction-recording-flow',
steps: [
{ component: 'wallet', operation: 'verify', output: 'verified-tx' },
{ component: 'logger', operation: 'record', input: 'verified-tx', output: 'log-entry' },
{ component: 'notification', operation: 'send', input: 'log-entry', output: 'notification' }
]
});
await flow.execute({
inputData: {
transaction: transactionResult,
walletId: userWallet.id
}
});
return {
walletId: userWallet.id,
processedData: processedData,
transactionId: transactionResult.id
};
} catch (error) {
console.error('Integration error:', error);
throw error;
} finally {
await core.disconnect();
}
}
integratedWalletExample()
.then(result => console.log('Integration successful:', result))
.catch(error => console.error('Integration failed:', error));