Dragonfire Engine
The Dragonfire Engine is the high-performance processing core of the DragonFire Semantic Network, operating at an unprecedented 65,536 frames per second. It manages bitstreams on semantic ports, applies transformations, and implements pattern detection for real-time data processing at scale.
Core Concepts
Bitstreams
The fundamental unit of data processing in the Dragonfire Engine is the bitstream—a high-performance sequence of bits flowing through semantic ports. Each bitstream is associated with a specific port number that defines its geometric properties and processing characteristics.
XOR Transformations
Bitstream data is processed using XOR transformations—high-performance bitwise operations that can be applied using SIMD (Single Instruction, Multiple Data) instructions for parallel processing. These transformations enable complex pattern matching, data fusion, and signal detection.
Fractal Tokens
To optimize repeated patterns in bitstreams, the engine generates fractal tokens that encode repetitive structures. This approach dramatically reduces bandwidth requirements and enables efficient pattern recognition across large datasets.
Implementation
The following example demonstrates the core implementation of the Dragonfire Engine:
class DragonFireEngine {
constructor() {
this.frameRate = 65536; // frames per second
this.frameDuration = 1000000 / this.frameRate; // in microseconds
this.streams = new Map(); // active bitstreams
this.xorMasks = new Map(); // precomputed transformation masks
this.frameCount = 0n; // 64-bit frame counter
}
// Initialize a bitstream on a semantic port
initStream(streamId, port) {
this.streams.set(streamId, {
port,
buffer: new Uint8Array(8192), // 65536 bits
position: 0,
lastUpdate: this.frameCount
});
}
// Apply XOR transform to a stream
applyXORTransform(streamId, maskId) {
const stream = this.streams.get(streamId);
const mask = this.xorMasks.get(maskId);
if (!stream || !mask) return false;
// Fast XOR using SIMD if available
if (typeof SIMD !== 'undefined') {
// Use SIMD.Int8x16 for parallel XOR operations
for (let i = 0; i < stream.buffer.length; i += 16) {
const streamVector = SIMD.Int8x16.load(stream.buffer, i);
const maskVector = SIMD.Int8x16.load(mask, i);
const result = SIMD.Int8x16.xor(streamVector, maskVector);
SIMD.Int8x16.store(stream.buffer, i, result);
}
} else {
// Fallback to regular XOR
for (let i = 0; i < stream.buffer.length; i++) {
stream.buffer[i] ^= mask[i % mask.length];
}
}
return true;
}
// Process a single engine frame
processFrame() {
this.frameCount++;
// Process all active streams for this frame
this.streams.forEach((stream, streamId) => {
// Apply scheduled transformations
if (this.hasScheduledTransform(streamId, this.frameCount)) {
const transformations = this.getScheduledTransforms(streamId, this.frameCount);
for (const transform of transformations) {
this.applyXORTransform(streamId, transform.maskId);
}
}
});
}
// Generate a fractal compression token for repeating patterns
generateFractalToken(streamId, startPos, length, iterations) {
const stream = this.streams.get(streamId);
if (!stream) return null;
// Create a fractal token that describes repeating pattern
return {
type: 'fractal',
streamId,
pattern: stream.buffer.slice(startPos, startPos + length),
iterations,
transform: 'xor' // Could be different transform types
};
}
// Real-time processing loop - runs at 65536 fps
startProcessing() {
const frameInterval = Math.floor(this.frameDuration / 1000); // in ms
// Use high-resolution timer if available
if (typeof window !== 'undefined' && window.requestAnimationFrame) {
const processFrameLoop = () => {
this.processFrame();
window.requestAnimationFrame(processFrameLoop);
};
window.requestAnimationFrame(processFrameLoop);
} else {
// Fallback to setInterval (less precise)
setInterval(() => this.processFrame(), frameInterval);
}
}
}
Working with the Dragonfire Engine
Creating Transformation Masks
Transformation masks are the key to implementing specific operations on bitstreams. Here's an example of creating a logical AND operation using XOR masks:
// Create a transformation mask that implements logical AND
const createANDMask = (engine, stream1Id, stream2Id, resultId) => {
const stream1 = engine.streams.get(stream1Id);
const stream2 = engine.streams.get(stream2Id);
const resultStream = engine.streams.get(resultId);
if (!stream1 || !stream2 || !resultStream) return false;
// Copy stream1 to result
for (let i = 0; i < stream1.buffer.length; i++) {
resultStream.buffer[i] = stream1.buffer[i];
}
// Create mask that, when XORed with stream1, will produce:
// 1 only when stream1 AND stream2 are both 1
const mask = new Uint8Array(8192);
for (let i = 0; i < mask.length; i++) {
// XOR with this mask will zero out bits where stream2 is 0
mask[i] = stream1.buffer[i] & ~stream2.buffer[i];
}
// Register the mask
engine.xorMasks.set('and_mask', mask);
// Apply the mask to produce AND result
engine.applyXORTransform(resultId, 'and_mask');
return true;
};
Pattern Detection
The Dragonfire Engine can be extended with pattern detection functionality to identify specific patterns in bitstreams:
// Add pattern detection method
DragonFireEngine.prototype.registerPatternDetector = function(streamId, detector) {
if (!this.patternDetectors) {
this.patternDetectors = new Map();
}
this.patternDetectors.set(streamId, detector);
};
// Method to check pattern
DragonFireEngine.prototype.checkPattern = function(detectorId, data, offset, length) {
const detector = this.patternDetectors.get(detectorId);
if (!detector) return false;
return detector(data, offset, length);
};
// Example: Register a threshold detector
engine.registerPatternDetector('threshold_detector', (data, offset, length) => {
const threshold = 0x7F;
for (let i = offset; i < offset + length; i++) {
if (data[i] > threshold) {
return true; // Pattern detected
}
}
return false;
});
Frame Handlers
To execute custom logic on specific frames, you can register frame handlers:
// Add frame handler registration
DragonFireEngine.prototype.registerFrameHandler = function(handler) {
if (!this.frameHandlers) {
this.frameHandlers = [];
}
this.frameHandlers.push(handler);
};
// Modify processFrame to call handlers
const originalProcessFrame = DragonFireEngine.prototype.processFrame;
DragonFireEngine.prototype.processFrame = function() {
// Call original implementation
originalProcessFrame.call(this);
// Call frame handlers
if (this.frameHandlers) {
for (const handler of this.frameHandlers) {
handler(this.frameCount);
}
}
};
// Example: Register a frame handler that runs every 100 frames
engine.registerFrameHandler((frameNumber) => {
if (frameNumber % 100 === 0) {
console.log(`Processing frame ${frameNumber}`);
// Execute custom processing...
}
});
Performance Considerations
The Dragonfire Engine operates at an extremely high frame rate, which requires careful performance optimization:
- SIMD Operations: Use SIMD when available for maximum throughput on bitstream operations
- Typed Arrays: Always use typed arrays (Uint8Array, etc.) rather than regular JavaScript arrays
- Frame Rate Adaptation: Consider implementing dynamic frame rate adjustment based on system capabilities
- Worker Threads: For computationally intensive operations, offload to Web Workers
- Selective Processing: Process only the data that has changed since the last frame
Example: Real-time Data Fusion
The following example demonstrates using the Dragonfire Engine for real-time sensor data fusion:
// Setup real-time sensor processing
const setupSensorFusion = (engine, timeSync) => {
// Initialize bitstreams for sensor data
engine.initStream('vibration', 500); // Port 500: Vibration data
engine.initStream('temperature', 501); // Port 501: Temperature data
engine.initStream('alarm', 510); // Port 510: Alarm output
// Create alert detection transform
const createAlertDetectionMask = () => {
// This XOR-based mask detects when both streams have a 1 bit in the same position
// Effectively implementing an AND operation
const mask = new Uint8Array(8192);
// Populate with pattern that results in 1 only when both inputs are 1
// ... implementation details ...
return mask;
};
// Register the mask
engine.xorMasks.set('alertDetection', createAlertDetectionMask());
// Setup pattern matching for vibration threshold
engine.registerPatternDetector('vibration', (data, offset, length) => {
// Check if vibration data exceeds threshold
const threshold = 0x7F; // Example threshold value
for (let i = offset; i < offset + length; i++) {
if (data[i] > threshold) {
return true; // Threshold exceeded
}
}
return false;
});
// Setup pattern matching for temperature threshold
engine.registerPatternDetector('temperature', (data, offset, length) => {
// Check if temperature data exceeds threshold
const threshold = 0x50; // Example threshold value
for (let i = offset; i < offset + length; i++) {
if (data[i] > threshold) {
return true; // Threshold exceeded
}
}
return false;
});
// Setup alarm fusion logic
engine.registerFrameHandler(async (frameNumber) => {
// Only process every 10 frames (still ~6.5kHz)
if (frameNumber % 10 !== 0) return;
const vibrationStream = engine.streams.get('vibration');
const temperatureStream = engine.streams.get('temperature');
const alarmStream = engine.streams.get('alarm');
// Check if both thresholds are exceeded
const vibrationAlert = engine.checkPattern('vibration', vibrationStream.buffer, 0, 64);
const temperatureAlert = engine.checkPattern('temperature', temperatureStream.buffer, 0, 64);
if (vibrationAlert && temperatureAlert) {
// Set alarm bit to 1
alarmStream.buffer[0] = 0x01;
// Log alarm with precise time
const alarmTime = timeSync.getSyncedMicroTime();
console.log(`ALERT detected at μs ${alarmTime}, frame ${frameNumber}`);
// Send alarm notification on real-time notification port
await portalConnection.sendMessage({
port: 510,
command: "ALARM",
payload: {
level: "CRITICAL",
source: "machine1",
time: alarmTime,
frame: frameNumber
}
});
} else {
// Reset alarm bit
alarmStream.buffer[0] = 0x00;
}
});
};