4D Mathematics
4D Mathematics is a revolutionary mathematical framework that extends traditional number systems into higher dimensions, enabling rotational number logic, multi-dimensional transformations, and computational geometry that powers the DragonFire ecosystem's advanced capabilities.
Introduction
4D Mathematics represents a fundamental reimagining of numerical systems and operations by extending them into higher dimensions. While conventional mathematics operates primarily in 1D (scalars), 2D (complex numbers), or 3D (vectors/quaternions), 4D Mathematics embraces higher-dimensional spaces to unlock powerful computational capabilities and transformational operations.
At its core, 4D Mathematics leverages rotational and higher-dimensional number logic to enable operations that are impossible or inefficient in traditional mathematical frameworks. This approach creates a natural alignment with the geometric and fractal principles that underpin the entire DragonFire architecture.
4D Mathematics serves as a critical foundation for multiple DragonFire components, enabling DragonCube's spatial computing, DragonHeart's harmonic transformations, and the geometric execution mapping of the DragonFire Kernel. By providing a unified mathematical language for higher-dimensional operations, it creates coherence across the diverse computational mechanisms of the DragonFire ecosystem.
Core Principle: 4D Mathematics operates on the principle that computational problems become more tractable when represented in their natural dimensional space rather than being projected down to lower dimensions. By embracing higher dimensions and rotational transformations, 4D Mathematics enables more elegant and efficient solutions to complex computational challenges.
Key Concepts
Rotational Number Logic
Extends traditional number operations to include rotational transformations, where numbers rotate through higher-dimensional spaces rather than simply scaling or translating.
Higher-Dimensional Spaces
Employs mathematical constructs that operate in dimensions beyond the familiar 3D space, working natively in 4D, 5D, 7D, and other prime dimensional spaces.
Geometric Number Systems
Unifies numbers and geometry, representing numerical values as spatial coordinates and operations as geometric transformations in multi-dimensional space.
Harmonic Transformations
Applies transformations based on mathematical constants (Phi, Pi, √2, √3) that preserve harmonic relationships across dimensions.
Prime Dimensional Mapping
Maps operations to prime-numbered dimensional spaces (3D, 5D, 7D, 11D, etc.) for optimized computational characteristics.
Jitterbug Transformations
Implements Buckminster Fuller's jitterbug transformations that dynamically morph between geometric forms in higher dimensions.
Rotational Mathematics
Rotational mathematics extends traditional number systems by incorporating rotation as a fundamental operation:
Beyond Complex Numbers
While complex numbers introduce 2D rotations, 4D Mathematics extends rotation to higher dimensions:
Number System | Dimensions | Rotation Capability | Representative Form |
---|---|---|---|
Real Numbers | 1D | None (scalar only) | a |
Complex Numbers | 2D | Single plane rotation | a + bi |
Quaternions | 4D | 3D rotations | a + bi + cj + dk |
Octonions | 8D | 7D rotations | a₀ + a₁e₁ + a₂e₂ + ... + a₇e₇ |
Sedenions | 16D | 15D rotations | a₀ + a₁e₁ + a₂e₂ + ... + a₁₅e₁₅ |
φ-Hyperions | Phi-scaled | Golden ratio rotations | a₀ + φa₁ + φ²a₂ + ... + φⁿaₙ |
Rotational Operations
4D Mathematics implements several key rotational operations:
// Apply rotation in 4D space
void rotate4D(vector4d_t* vector, double angle, rotation_plane_t plane) {
// Create rotation matrix for specified plane
matrix4d_t rotation_matrix;
switch (plane) {
case PLANE_XY:
// Rotate in XY plane
rotation_matrix.m[0][0] = cos(angle);
rotation_matrix.m[0][1] = -sin(angle);
rotation_matrix.m[1][0] = sin(angle);
rotation_matrix.m[1][1] = cos(angle);
rotation_matrix.m[2][2] = 1.0;
rotation_matrix.m[3][3] = 1.0;
break;
case PLANE_XZ:
// Rotate in XZ plane
rotation_matrix.m[0][0] = cos(angle);
rotation_matrix.m[0][2] = -sin(angle);
rotation_matrix.m[2][0] = sin(angle);
rotation_matrix.m[2][2] = cos(angle);
rotation_matrix.m[1][1] = 1.0;
rotation_matrix.m[3][3] = 1.0;
break;
case PLANE_XW:
// Rotate in XW plane (4D specific)
rotation_matrix.m[0][0] = cos(angle);
rotation_matrix.m[0][3] = -sin(angle);
rotation_matrix.m[3][0] = sin(angle);
rotation_matrix.m[3][3] = cos(angle);
rotation_matrix.m[1][1] = 1.0;
rotation_matrix.m[2][2] = 1.0;
break;
// Other planes: YZ, YW, ZW
// ...
}
// Apply rotation matrix to vector
vector4d_t result = {0};
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
result.v[i] += rotation_matrix.m[i][j] * vector->v[j];
}
}
// Copy result back to vector
*vector = result;
}
Multi-Plane Rotations
4D Mathematics enables simultaneous rotations across multiple planes, creating powerful transformational capabilities:
// Apply simultaneous rotations across multiple planes
void multiPlaneRotation(vector4d_t* vector, rotation_set_t* rotations) {
// Create combined rotation matrix
matrix4d_t combined = identityMatrix4D();
// Compose rotations across all specified planes
for (int i = 0; i < rotations->count; i++) {
rotation_t* rotation = &rotations->rotations[i];
matrix4d_t plane_rotation = createRotationMatrix(
rotation->angle,
rotation->plane
);
// Multiply matrices to combine rotations
combined = multiplyMatrices4D(combined, plane_rotation);
}
// Apply combined rotation to vector
vector4d_t result = {0};
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
result.v[i] += combined.m[i][j] * vector->v[j];
}
}
// Copy result back to vector
*vector = result;
}
Higher-Dimensional Numbers
4D Mathematics introduces number systems that natively operate in higher dimensions:
Hypercomplex Numbers
Hypercomplex number systems extend complex numbers to higher dimensions:
// Define hypercomplex number types
typedef struct {
double components[4]; // a + bi + cj + dk
} quaternion_t;
typedef struct {
double components[8]; // a₀ + a₁e₁ + a₂e₂ + ... + a₇e₇
} octonion_t;
typedef struct {
double components[16]; // a₀ + a₁e₁ + a₂e₂ + ... + a₁₅e₁₅
} sedenion_t;
// Multiplication for quaternions (non-commutative)
quaternion_t multiplyQuaternions(quaternion_t q1, quaternion_t q2) {
quaternion_t result;
// Real part: a₁a₂ - b₁b₂ - c₁c₂ - d₁d₂
result.components[0] = q1.components[0] * q2.components[0] -
q1.components[1] * q2.components[1] -
q1.components[2] * q2.components[2] -
q1.components[3] * q2.components[3];
// i part: a₁b₂ + b₁a₂ + c₁d₂ - d₁c₂
result.components[1] = q1.components[0] * q2.components[1] +
q1.components[1] * q2.components[0] +
q1.components[2] * q2.components[3] -
q1.components[3] * q2.components[2];
// j part: a₁c₂ - b₁d₂ + c₁a₂ + d₁b₂
result.components[2] = q1.components[0] * q2.components[2] -
q1.components[1] * q2.components[3] +
q1.components[2] * q2.components[0] +
q1.components[3] * q2.components[1];
// k part: a₁d₂ + b₁c₂ - c₁b₂ + d₁a₂
result.components[3] = q1.components[0] * q2.components[3] +
q1.components[1] * q2.components[2] -
q1.components[2] * q2.components[1] +
q1.components[3] * q2.components[0];
return result;
}
Golden Ratio Extensions
φ-Hyperions extend hypercomplex numbers using the golden ratio (φ):
// Define φ-hyperion type
typedef struct {
uint16_t dimension; // Dimension of the hyperion
double* components; // Array of components
bool phi_scaled; // Whether scaling uses phi
} phi_hyperion_t;
// Initialize φ-hyperion
phi_hyperion_t* initPhiHyperion(uint16_t dimension) {
phi_hyperion_t* hyperion = (phi_hyperion_t*)malloc(sizeof(phi_hyperion_t));
hyperion->dimension = dimension;
hyperion->components = (double*)calloc(dimension, sizeof(double));
hyperion->phi_scaled = true;
return hyperion;
}
// Multiply two φ-hyperions
phi_hyperion_t* multiplyPhiHyperions(phi_hyperion_t* h1, phi_hyperion_t* h2) {
// Create result hyperion with combined dimension
uint16_t result_dim = h1->dimension + h2->dimension - 1;
phi_hyperion_t* result = initPhiHyperion(result_dim);
// Perform convolution with phi-scaling
for (uint16_t i = 0; i < h1->dimension; i++) {
for (uint16_t j = 0; j < h2->dimension; j++) {
double phi_factor = pow(PHI, i + j);
uint16_t idx = i + j;
if (idx < result_dim) {
result->components[idx] += h1->components[i] * h2->components[j] * phi_factor;
}
}
}
// Normalize result
normalizePhiHyperion(result);
return result;
}
R-Space Number Systems
R-Space numbers operate in prime reciprocal spaces with unique mathematical properties:
// Define R-Space number types
typedef struct {
uint16_t dimension; // Prime dimension (7, 11, 13, etc.)
double* components; // Components in prime space
r_space_type_t type; // Type of R-Space
} r_space_number_t;
// Different R-Space types
typedef enum {
R_SPACE_7, // 7-dimensional prime space
R_SPACE_11, // 11-dimensional prime space
R_SPACE_13, // 13-dimensional prime space
R_SPACE_17, // 17-dimensional prime space
R_SPACE_COMPOSITE // Composite of multiple spaces
} r_space_type_t;
// Initialize R-Space number
r_space_number_t* initRSpaceNumber(r_space_type_t type) {
r_space_number_t* number = (r_space_number_t*)malloc(sizeof(r_space_number_t));
number->type = type;
// Set dimension based on type
switch (type) {
case R_SPACE_7: number->dimension = 7; break;
case R_SPACE_11: number->dimension = 11; break;
case R_SPACE_13: number->dimension = 13; break;
case R_SPACE_17: number->dimension = 17; break;
case R_SPACE_COMPOSITE:
// Composite space with multiple dimensions
number->dimension = 7 * 11 * 13;
break;
}
// Allocate and initialize components
number->components = (double*)calloc(number->dimension, sizeof(double));
return number;
}
Transformational Mathematics
4D Mathematics implements powerful transformation operations that extend beyond simple arithmetic:
Jitterbug Transformations
Inspired by Buckminster Fuller's work, jitterbug transformations dynamically morph between geometric forms:
// Apply jitterbug transformation to geometric structure
void applyJitterbugTransform(geometric_structure_t* structure,
jitterbug_phase_t phase,
double transformation_factor) {
// Get transformation parameters based on phase
double scaling = 1.0;
double rotation = 0.0;
switch (phase) {
case JITTERBUG_OCTAHEDRON:
scaling = 1.0;
rotation = 0.0;
break;
case JITTERBUG_ICOSAHEDRON:
scaling = PHI;
rotation = PI / 5.0;
break;
case JITTERBUG_CUBOCTAHEDRON:
scaling = SQRT2;
rotation = PI / 4.0;
break;
case JITTERBUG_TETRAHEDRON:
scaling = SQRT3 / 2.0;
rotation = PI / 3.0;
break;
}
// Scale by transformation factor (0.0 to 1.0)
scaling = 1.0 + (scaling - 1.0) * transformation_factor;
rotation *= transformation_factor;
// Apply transformation to each vertex
for (uint32_t i = 0; i < structure->vertex_count; i++) {
// Create 4D rotation for vertex
rotation_set_t rotations;
rotations.count = 3;
rotations.rotations[0].plane = PLANE_XY;
rotations.rotations[0].angle = rotation;
rotations.rotations[1].plane = PLANE_XZ;
rotations.rotations[1].angle = rotation * PHI;
rotations.rotations[2].plane = PLANE_YZ;
rotations.rotations[2].angle = rotation * (1.0 / PHI);
// Apply multi-plane rotation
multiPlaneRotation(&structure->vertices[i], &rotations);
// Scale vertex
for (int j = 0; j < 4; j++) {
structure->vertices[i].v[j] *= scaling;
}
}
// Update structure state
structure->jitterbug_phase = phase;
structure->transformation_factor = transformation_factor;
}
Higher-Dimensional Matrix Operations
4D Mathematics implements matrix operations in higher dimensions:
// Generalized matrix multiplication in arbitrary dimensions
void multiplyMatrices(double* result, double* matrix1, double* matrix2,
uint16_t dim1, uint16_t dim2, uint16_t dim3) {
// Multiply matrices of dimensions dim1×dim2 and dim2×dim3
// Result is a dim1×dim3 matrix
// Initialize result matrix to zero
for (uint16_t i = 0; i < dim1 * dim3; i++) {
result[i] = 0.0;
}
// Perform matrix multiplication
for (uint16_t i = 0; i < dim1; i++) {
for (uint16_t j = 0; j < dim3; j++) {
for (uint16_t k = 0; k < dim2; k++) {
result[i * dim3 + j] += matrix1[i * dim2 + k] * matrix2[k * dim3 + j];
}
}
}
}
// Create transformation matrix in specified dimension
double* createTransformationMatrix(uint16_t dimension, transformation_type_t type,
double* params) {
// Allocate matrix of size dimension×dimension
double* matrix = (double*)calloc(dimension * dimension, sizeof(double));
switch (type) {
case TRANSFORM_ROTATION:
// Fill with rotation matrix elements
// params: plane, angle
createRotationMatrixND(matrix, dimension, params[0], params[1]);
break;
case TRANSFORM_SCALING:
// Fill with scaling matrix elements
// params: scale factors for each dimension
createScalingMatrixND(matrix, dimension, params);
break;
case TRANSFORM_SHEAR:
// Fill with shear matrix elements
// params: shear factors
createShearMatrixND(matrix, dimension, params);
break;
case TRANSFORM_PROJECTION:
// Fill with projection matrix elements
// params: projection parameters
createProjectionMatrixND(matrix, dimension, params);
break;
case TRANSFORM_COMPOSITE:
// Create identity matrix as starting point
createIdentityMatrixND(matrix, dimension);
break;
}
return matrix;
}
Harmonic Transformations
Transformations based on mathematical constants that preserve harmonic relationships:
// Apply harmonic transformation to data
void applyHarmonicTransformation(double* data, size_t data_size, harmonic_type_t harmonic) {
// Get harmonic constant
double constant = 0.0;
switch (harmonic) {
case HARMONIC_PHI: constant = PHI; break;
case HARMONIC_PI: constant = PI; break;
case HARMONIC_SQRT2: constant = SQRT2; break;
case HARMONIC_SQRT3: constant = SQRT3; break;
case HARMONIC_COMPOSITE:
// Use composite harmonic based on Phi/Pi ratio
constant = PHI * PI / (PHI + PI);
break;
}
// Apply harmonic transformation based on type
for (size_t i = 0; i < data_size; i++) {
switch (harmonic) {
case HARMONIC_PHI:
// Apply golden ratio transformation
data[i] = data[i] * (1.0 + ((i % 2) ? (1.0 / PHI) : PHI) / 10.0);
break;
case HARMONIC_PI:
// Apply Pi-based wave transformation
data[i] = data[i] * (1.0 + sin(i * PI / data_size) / 10.0);
break;
case HARMONIC_SQRT2:
// Apply √2 scaling transformation
data[i] = data[i] * (1.0 + ((i % 3) ? SQRT2 : (1.0 / SQRT2)) / 10.0);
break;
case HARMONIC_SQRT3:
// Apply √3 triangular transformation
data[i] = data[i] * (1.0 + ((i % 3) * SQRT3 / 3.0) / 10.0);
break;
case HARMONIC_COMPOSITE:
// Apply composite harmonic transformation
data[i] = data[i] * (1.0 + (sin(i * PI / PHI) / SQRT2) / 10.0);
break;
}
}
}
Implementation Guide
4D Mathematics API
The 4D Mathematics API provides interfaces for working with higher-dimensional mathematics:
// Initialize 4D mathematics library
FourDMath* fourDMath_init() {
FourDMath* math = (FourDMath*)malloc(sizeof(FourDMath));
// Initialize number systems
math->quaternions = initQuaternionSystem();
math->octonions = initOctonionSystem();
math->phi_hyperions = initPhiHyperionSystem();
math->r_space = initRSpaceSystem();
// Initialize transformation system
math->transformations = initTransformationSystem();
// Set default dimension
math->default_dimension = 4;
return math;
}
// Create vector in specified dimension
vector_t* fourDMath_createVector(FourDMath* math, uint16_t dimension) {
vector_t* vector = (vector_t*)malloc(sizeof(vector_t));
vector->dimension = dimension;
vector->components = (double*)calloc(dimension, sizeof(double));
return vector;
}
// Apply rotation to vector
void fourDMath_rotateVector(FourDMath* math, vector_t* vector, double angle,
uint16_t plane_dim1, uint16_t plane_dim2) {
// Validate dimensions
if (plane_dim1 >= vector->dimension || plane_dim2 >= vector->dimension) {
fprintf(stderr, "Invalid plane dimensions\n");
return;
}
// Create rotation matrix
matrix_t* rotation = fourDMath_createRotationMatrix(
math,
vector->dimension,
angle,
plane_dim1,
plane_dim2
);
// Apply rotation to vector
vector_t* result = fourDMath_applyMatrix(math, rotation, vector);
// Copy result back to original vector
memcpy(vector->components, result->components,
vector->dimension * sizeof(double));
// Clean up
fourDMath_freeMatrix(math, rotation);
fourDMath_freeVector(math, result);
}
// Create 4D jitterbug transformation
jitterbug_t* fourDMath_createJitterbug(FourDMath* math) {
jitterbug_t* jitterbug = (jitterbug_t*)malloc(sizeof(jitterbug_t));
// Initialize jitterbug vertices
jitterbug->vertex_count = 12; // Icosahedron vertices
jitterbug->vertices = (vector_t**)malloc(jitterbug->vertex_count * sizeof(vector_t*));
// Create icosahedron vertices
for (uint16_t i = 0; i < jitterbug->vertex_count; i++) {
jitterbug->vertices[i] = fourDMath_createVector(math, 4);
fourDMath_initIcosahedronVertex(jitterbug->vertices[i], i);
}
// Set initial jitterbug state
jitterbug->phase = JITTERBUG_ICOSAHEDRON;
jitterbug->transformation_factor = 1.0;
return jitterbug;
}
// Transform jitterbug to different phase
void fourDMath_transformJitterbug(FourDMath* math, jitterbug_t* jitterbug,
jitterbug_phase_t target_phase, double factor) {
// Apply jitterbug transformation
applyJitterbugTransform(jitterbug, target_phase, factor);
// Update jitterbug state
jitterbug->phase = target_phase;
jitterbug->transformation_factor = factor;
}
Using Different Number Systems
4D Mathematics supports multiple number systems for different applications:
Number System | Best For | API Class | Example Usage |
---|---|---|---|
Quaternions | 3D rotations, computer graphics | QuaternionSystem |
Camera rotations, physics simulations |
Octonions | 7D calculations, string theory | OctonionSystem |
Advanced pattern matching, quantum calculations |
φ-Hyperions | Phi-scaled operations, natural patterns | PhiHyperionSystem |
Biological simulations, aesthetic algorithms |
R-Space Numbers | Prime-dimensional optimization | RSpaceSystem |
Cryptography, data compression |
Performance Considerations
For optimal performance when working with 4D Mathematics:
- Dimensionality: Choose the appropriate number system and dimension for your problem domain
- Matrix Operations: Pre-compute and cache transformation matrices when possible
- SIMD Optimization: Leverage SIMD instructions for parallel vector operations
- Memory Management: Reuse vector and matrix structures rather than reallocating
- Geometric Simplification: Use symmetry and patterns to reduce computational complexity
// Optimize 4D math operations for specific problem domain
void optimizeFourDMath(FourDMath* math, problem_domain_t domain) {
switch (domain) {
case DOMAIN_GRAPHICS:
// Optimize for computer graphics
math->default_dimension = 4;
math->preferred_system = NUMBER_SYSTEM_QUATERNION;
math->use_simd = true;
math->cache_transforms = true;
break;
case DOMAIN_PHYSICS:
// Optimize for physics simulations
math->default_dimension = 4;
math->preferred_system = NUMBER_SYSTEM_QUATERNION;
math->use_temporal_coherence = true;
math->use_simd = true;
break;
case DOMAIN_PATTERN_MATCHING:
// Optimize for pattern matching
math->default_dimension = 7;
math->preferred_system = NUMBER_SYSTEM_OCTONION;
math->use_symmetry_optimization = true;
break;
case DOMAIN_NATURAL_SYSTEMS:
// Optimize for natural systems
math->default_dimension = 8;
math->preferred_system = NUMBER_SYSTEM_PHI_HYPERION;
math->use_phi_optimization = true;
break;
case DOMAIN_CRYPTOGRAPHY:
// Optimize for cryptographic applications
math->default_dimension = 13;
math->preferred_system = NUMBER_SYSTEM_R_SPACE;
math->use_prime_optimization = true;
break;
default:
// General purpose optimization
math->default_dimension = 4;
math->preferred_system = NUMBER_SYSTEM_QUATERNION;
math->use_simd = true;
break;
}
}
Integration with DragonFire Ecosystem
4D Mathematics integrates with other DragonFire components to provide rotational and higher-dimensional mathematical capabilities:
DragonCube Integration
4D Mathematics powers DragonCube's geometric computing capabilities:
// Integrate 4D Mathematics with DragonCube
void integrateWithDragonCube(FourDMath* math, DragonCube* cube) {
// Connect 4D Math library to cube's geometric engine
cube->mathLibrary = math;
// Set up quaternion system for rotational calculations
cube->rotationSystem = math->quaternions;
// Configure coordinate system dimensions
cube->coordinate_system->dimensions = math->default_dimension;
// Set up jitterbug transformations
cube->transformer->jitterbug = fourDMath_createJitterbug(math);
// Create mathematical mapping between quantum geo bits and 4D space
mapGeoBitsToMathSpace(cube->geo_bit_controller, math);
// Initialize geometric transformation functions
initializeGeometricFunctions(cube, math);
}
DragonHeart Integration
4D Mathematics provides the mathematical foundation for DragonHeart's harmonic processing:
// Integrate 4D Mathematics with DragonHeart
void integrateWithDragonHeart(FourDMath* math, DragonHeart* heart) {
// Connect harmonic wave generator to φ-hyperion system
heart->waveGenerator->mathSystem = math->phi_hyperions;
// Set up transformational operations
heart->geometric->transformer = math->transformations;
// Configure mathematical constants
heart->phi = math->constants.phi;
heart->pi = math->constants.pi;
heart->sqrt2 = math->constants.sqrt2;
heart->sqrt3 = math->constants.sqrt3;
// Initialize harmonic transformation functions
initializeHarmonicTransforms(heart, math);
// Set up resonance mappings
mapResonanceToMathSpace(heart->resonance, math);
}
DragonFire Kernel Integration
4D Mathematics enables the Kernel's geometric execution mapping:
// Integrate 4D Mathematics with DragonFire Kernel
void integrateWithKernel(FourDMath* math, DragonKernel* kernel) {
// Set up vector operations for kernel
kernel->vectorOps = math->vectorOperations;
// Configure rotation operations for jitterbug transformations
kernel->rotationSystem = math->quaternions;
// Set up geometric mapping for fractal execution
setupGeometricMapping(kernel->executionSpace, math);
// Initialize mathematical conversion from opcodes to geometric coordinates
initializeOpcodeToGeometric(kernel, math);
// Configure dimensional interfaces
for (uint16_t i = 0; i < kernel->dimensionCount; i++) {
setupDimensionalInterface(kernel->dimensions[i], math);
}
}
End-to-End Mathematical Foundation
4D Mathematics provides a unified mathematical language across the DragonFire ecosystem:
This integrated approach ensures mathematical consistency across all components, enabling seamless transitions between different computational contexts while maintaining the full power of higher-dimensional operations.
Key Integration Insight: 4D Mathematics isn't just a computational tool—it's the fundamental mathematical language that enables the DragonFire ecosystem to transcend traditional computing limitations. By providing a unified framework for higher-dimensional operations, it creates the mathematical foundation that makes DragonFire's revolutionary capabilities possible.
Examples
Basic 4D Mathematics Usage
#include "four_d_math.h"
int main() {
// Initialize 4D Mathematics library
FourDMath* math = fourDMath_init();
// Create 4D vector
vector_t* v = fourDMath_createVector(math, 4);
v->components[0] = 1.0;
v->components[1] = 2.0;
v->components[2] = 3.0;
v->components[3] = 4.0;
printf("Original vector: (%.2f, %.2f, %.2f, %.2f)\n",
v->components[0], v->components[1],
v->components[2], v->components[3]);
// Apply 4D rotation in XY plane
fourDMath_rotateVector(math, v, PI/4, 0, 1);
printf("After XY rotation: (%.2f, %.2f, %.2f, %.2f)\n",
v->components[0], v->components[1],
v->components[2], v->components[3]);
// Apply 4D rotation in ZW plane (4D specific)
fourDMath_rotateVector(math, v, PI/3, 2, 3);
printf("After ZW rotation: (%.2f, %.2f, %.2f, %.2f)\n",
v->components[0], v->components[1],
v->components[2], v->components[3]);
// Create quaternion for 3D rotation
quaternion_t q = fourDMath_createQuaternion(math, 1.0, 0.0, 1.0, 0.0);
fourDMath_normalizeQuaternion(math, &q);
// Apply quaternion rotation to 3D portion of vector
fourDMath_applyQuaternionRotation(math, v, &q);
printf("After quaternion rotation: (%.2f, %.2f, %.2f, %.2f)\n",
v->components[0], v->components[1],
v->components[2], v->components[3]);
// Clean up
fourDMath_freeVector(math, v);
fourDMath_free(math);
return 0;
}
Jitterbug Transformation Example
// Demonstrate jitterbug transformation
void demonstrateJitterbug() {
// Initialize 4D Mathematics library
FourDMath* math = fourDMath_init();
// Create jitterbug structure
jitterbug_t* jitterbug = fourDMath_createJitterbug(math);
printf("Created jitterbug with %d vertices\n", jitterbug->vertex_count);
// Print initial state (icosahedron)
printf("Initial state (icosahedron):\n");
for (int i = 0; i < 3; i++) { // Just show first 3 vertices
printf("Vertex %d: (%.2f, %.2f, %.2f, %.2f)\n", i,
jitterbug->vertices[i]->components[0],
jitterbug->vertices[i]->components[1],
jitterbug->vertices[i]->components[2],
jitterbug->vertices[i]->components[3]);
}
// Transform to octahedron (factor 0.6)
printf("\nTransforming to octahedron (factor 0.6)...\n");
fourDMath_transformJitterbug(math, jitterbug, JITTERBUG_OCTAHEDRON, 0.6);
// Print transformed state
printf("Transformed state:\n");
for (int i = 0; i < 3; i++) { // Just show first 3 vertices
printf("Vertex %d: (%.2f, %.2f, %.2f, %.2f)\n", i,
jitterbug->vertices[i]->components[0],
jitterbug->vertices[i]->components[1],
jitterbug->vertices[i]->components[2],
jitterbug->vertices[i]->components[3]);
}
// Transform to cuboctahedron (factor 0.8)
printf("\nTransforming to cuboctahedron (factor 0.8)...\n");
fourDMath_transformJitterbug(math, jitterbug, JITTERBUG_CUBOCTAHEDRON, 0.8);
// Print transformed state
printf("Transformed state:\n");
for (int i = 0; i < 3; i++) { // Just show first 3 vertices
printf("Vertex %d: (%.2f, %.2f, %.2f, %.2f)\n", i,
jitterbug->vertices[i]->components[0],
jitterbug->vertices[i]->components[1],
jitterbug->vertices[i]->components[2],
jitterbug->vertices[i]->components[3]);
}
// Clean up
fourDMath_freeJitterbug(math, jitterbug);
fourDMath_free(math);
}
Higher-Dimensional Number Example
// Demonstrate higher-dimensional number operations
void demonstrateHigherDimensionalNumbers() {
// Initialize 4D Mathematics library
FourDMath* math = fourDMath_init();
printf("Demonstrating higher-dimensional number operations:\n\n");
// Create and manipulate quaternions
printf("Quaternion operations:\n");
quaternion_t q1 = fourDMath_createQuaternion(math, 1.0, 2.0, 3.0, 4.0);
quaternion_t q2 = fourDMath_createQuaternion(math, 4.0, 3.0, 2.0, 1.0);
printf("q1 = (%.2f, %.2f, %.2f, %.2f)\n",
q1.components[0], q1.components[1],
q1.components[2], q1.components[3]);
printf("q2 = (%.2f, %.2f, %.2f, %.2f)\n",
q2.components[0], q2.components[1],
q2.components[2], q2.components[3]);
// Multiply quaternions (non-commutative)
quaternion_t q_product = fourDMath_multiplyQuaternions(math, q1, q2);
printf("q1 * q2 = (%.2f, %.2f, %.2f, %.2f)\n",
q_product.components[0], q_product.components[1],
q_product.components[2], q_product.components[3]);
// Create φ-hyperion
printf("\nφ-Hyperion operations:\n");
phi_hyperion_t* h1 = fourDMath_createPhiHyperion(math, 4);
h1->components[0] = 1.0;
h1->components[1] = 1.0 / PHI;
h1->components[2] = 1.0 / (PHI * PHI);
h1->components[3] = 1.0 / (PHI * PHI * PHI);
printf("Phi-Hyperion: (%.2f, %.2f, %.2f, %.2f)\n",
h1->components[0], h1->components[1],
h1->components[2], h1->components[3]);
// Apply φ-scaling transformation
fourDMath_applyPhiScaling(math, h1);
printf("After phi-scaling: (%.2f, %.2f, %.2f, %.2f)\n",
h1->components[0], h1->components[1],
h1->components[2], h1->components[3]);
// Create R-Space number
printf("\nR-Space number operations:\n");
r_space_number_t* r13 = fourDMath_createRSpaceNumber(math, R_SPACE_13);
// Set prime components based on position
for (int i = 0; i < 13; i++) {
r13->components[i] = 1.0 / sqrt(i + 1);
}
printf("R13 space number created with 13 components\n");
printf("First component: %.4f\n", r13->components[0]);
printf("Last component: %.4f\n", r13->components[12]);
// Apply R-space transformation
fourDMath_applyRSpaceTransform(math, r13);
printf("After R-space transformation:\n");
printf("First component: %.4f\n", r13->components[0]);
printf("Last component: %.4f\n", r13->components[12]);
// Clean up
fourDMath_freePhiHyperion(math, h1);
fourDMath_freeRSpaceNumber(math, r13);
fourDMath_free(math);
}
View more examples in our SDK Examples section or try the Interactive 4D Mathematics Demo.
Next Steps
- Explore the complete 4D Mathematics API Reference
- Download the 4D Mathematics SDK
- Try the Interactive 4D Mathematics Demo
- Learn about related mathematical components like GeoMath and GeoCode
- Explore R-Space Mathematics for prime-dimensional computations