GeoMath
GeoMath is a harmonic mathematical framework that defines the fundamental spatial relationships, transformations, and resonance patterns governing geometric structures in the DragonFire ecosystem, enabling operations that preserve mathematical beauty and coherence.
Introduction
GeoMath represents the mathematical soul of the DragonFire system—a comprehensive framework for harmonic mathematics of space that defines how geometric forms relate, transform, and resonate with one another. While GeoCode provides the symbolic encoding of geometric structures, GeoMath supplies the mathematical operations and principles that govern these structures and their transformations.
At its core, GeoMath implements a system of mathematical operations based on fundamental constants (φ, π, √2, √3) that maintain harmonic relationships during transformations. This approach enables mathematical operations that preserve the inherent beauty and coherence of geometric structures across transformations and dimensional shifts.
GeoMath views geometry not as a static construct but as a dynamic, resonant system where forms can transform between states while maintaining mathematical relationships. This perspective aligns with both ancient mathematical traditions and cutting-edge approaches to geometric computation.
Core Principle: GeoMath operates on the principle that mathematical beauty and coherence can be preserved through transformations by adhering to harmonic relationships based on fundamental constants. These relationships create resonance patterns that govern the behavior of geometric structures across different dimensions and transformational states.
Key Concepts
Harmonic Relationships
Mathematical connections between geometric structures based on ratios derived from fundamental constants, creating coherent patterns across transformations.
Resonance Patterns
Geometric configurations that exhibit heightened stability or coherence at specific ratios, mimicking the physical concept of resonance in mathematical space.
Transformation Preservation
Mathematical operations that maintain key geometric properties during transformations between different forms and dimensions.
Constant-Based Scaling
Scaling operations based on mathematical constants (φ, π, √2, √3) that preserve harmonic relationships between geometric structures.
Vector Form Mathematics
Mathematical framework that treats geometric structures as dynamic vector forms capable of continuous transformation rather than discrete entities.
Harmonic Wave Functions
Mathematical functions that describe the wave-like behaviors of geometric transformations across dimensional spaces.
Harmonic Constants
GeoMath is fundamentally built upon a set of mathematical constants that create harmonic relationships in geometric space:
Phi (φ)
The golden ratio, which governs the most harmonious proportions in nature and art. In GeoMath, φ is used for:
- Icosahedral/dodecahedral transformations
- Golden spiral vector paths
- Natural growth and scaling patterns
- Optimal boundary conditions between geometric states
// Apply φ-based transformation
void applyPhiTransform(vector_t* vectors, size_t count, uint8_t iterations) {
// Apply phi-based scaling to vectors
for (size_t i = 0; i < count; i++) {
for (uint8_t j = 0; j < iterations; j++) {
// Apply golden ratio scaling
vectors[i].magnitude *= PHI;
// Apply golden angle rotation (137.5 degrees)
vectors[i].theta += 2.0 * PI * (1.0 - 1.0 / PHI);
}
}
}
Pi (π)
The ratio of a circle's circumference to its diameter. In GeoMath, π is used for:
- Circular and spherical harmonics
- Wave-based transformations
- Rotational symmetry operations
- Cyclical pattern generation
// Apply π-based harmonic wave
void applyPiHarmonicWave(vector_t* vectors, size_t count,
double frequency, double amplitude) {
// Apply pi-based wave transformation
for (size_t i = 0; i < count; i++) {
// Generate wave pattern based on position
double phase = vectors[i].magnitude * frequency;
// Apply wave transformation
vectors[i].magnitude += amplitude * sin(phase * PI);
vectors[i].direction.x += amplitude * cos(phase * PI) / 2.0;
vectors[i].direction.y += amplitude * sin(phase * PI) / 2.0;
}
}
Root 2 (√2)
The diagonal of a unit square. In GeoMath, √2 is used for:
- Cubic/octahedral transformations
- Diagonal relationship calculations
- Boundary transitions between geometric domains
- Square-root-based harmonic progressions
// Apply √2-based transformation
void applySqrt2Transform(vector_t* vectors, size_t count) {
// Apply sqrt2-based scaling and rotation
for (size_t i = 0; i < count; i++) {
// Apply sqrt2 scaling for cubic transformation
vectors[i].magnitude *= SQRT2;
// Apply 45-degree rotation (π/4)
vectors[i].theta += PI / 4.0;
// Apply proper diagonal relationship
double temp = vectors[i].direction.x;
vectors[i].direction.x = (vectors[i].direction.x + vectors[i].direction.y) / SQRT2;
vectors[i].direction.y = (temp - vectors[i].direction.y) / SQRT2;
}
}
Root 3 (√3)
The height of an equilateral triangle with side length 2. In GeoMath, √3 is used for:
- Tetrahedral/triangular transformations
- Hexagonal grid systems
- Triangular harmonic relationships
- Three-fold symmetry operations
// Apply √3-based triangular transformation
void applySqrt3Transform(vector_t* vectors, size_t count) {
// Apply sqrt3-based scaling and triangular transformation
for (size_t i = 0; i < count; i++) {
// Apply sqrt3 scaling for triangular transformation
vectors[i].magnitude *= SQRT3 / 2.0;
// Apply 60-degree rotation (π/3)
vectors[i].theta += PI / 3.0;
// Apply triangular transformation
vectors[i].direction.z = SQRT3 / 2.0 *
sqrt(vectors[i].direction.x * vectors[i].direction.x +
vectors[i].direction.y * vectors[i].direction.y);
}
}
Root 6 (√6)
A composite constant with special properties in geometric transformations. In GeoMath, √6 is used for:
- Rhombic dodecahedron constructions
- Complex 3D rotational systems
- Optimal packaging structures
- Cross-dimensional transformations
// Apply √6-based rhombic transformation
void applySqrt6Transform(vector_t* vectors, size_t count) {
const double SQRT6 = 2.449489742783178;
const double SQRT6_HALF = SQRT6 / 2.0;
// Apply sqrt6-based scaling and rhombic transformation
for (size_t i = 0; i < count; i++) {
// Apply sqrt6/2 scaling for rhombic dodecahedron radius
vectors[i].magnitude *= SQRT6_HALF;
// Apply rhombic transformation
double norm = sqrt(vectors[i].direction.x * vectors[i].direction.x +
vectors[i].direction.y * vectors[i].direction.y +
vectors[i].direction.z * vectors[i].direction.z);
if (norm > 0) {
vectors[i].direction.x = vectors[i].direction.x / norm * SQRT6_HALF;
vectors[i].direction.y = vectors[i].direction.y / norm * SQRT6_HALF;
vectors[i].direction.z = vectors[i].direction.z / norm * SQRT6_HALF;
}
}
}
Combined Harmonic Operations
GeoMath enables sophisticated combined operations that utilize multiple constants:
// Apply combined harmonic transformation
void applyCombinedHarmonicTransform(vector_t* vectors, size_t count,
harmonic_type_t type, double factor) {
// Get harmonic parameters
double phi_factor = 0.0, pi_factor = 0.0;
double sqrt2_factor = 0.0, sqrt3_factor = 0.0;
switch (type) {
case HARMONIC_ICOSAHEDRAL:
phi_factor = 0.7;
pi_factor = 0.2;
sqrt2_factor = 0.0;
sqrt3_factor = 0.1;
break;
case HARMONIC_OCTAHEDRAL:
phi_factor = 0.0;
pi_factor = 0.3;
sqrt2_factor = 0.6;
sqrt3_factor = 0.1;
break;
case HARMONIC_TETRAHEDRAL:
phi_factor = 0.1;
pi_factor = 0.2;
sqrt2_factor = 0.1;
sqrt3_factor = 0.6;
break;
case HARMONIC_BALANCED:
phi_factor = 0.25;
pi_factor = 0.25;
sqrt2_factor = 0.25;
sqrt3_factor = 0.25;
break;
}
// Apply combined harmonic transformation
for (size_t i = 0; i < count; i++) {
// Apply weighted combination of harmonic transformations
if (phi_factor > 0) {
applyPhiComponent(&vectors[i], phi_factor * factor);
}
if (pi_factor > 0) {
applyPiComponent(&vectors[i], pi_factor * factor);
}
if (sqrt2_factor > 0) {
applySqrt2Component(&vectors[i], sqrt2_factor * factor);
}
if (sqrt3_factor > 0) {
applySqrt3Component(&vectors[i], sqrt3_factor * factor);
}
// Normalize result if needed
normalizeVector(&vectors[i]);
}
}
Geometric Operations
GeoMath defines a comprehensive set of geometric operations that preserve harmonic relationships:
Harmonic Transformations
Transformations that preserve harmonic relationships between geometric structures:
// Define harmonic transformation types
typedef enum {
TRANSFORM_SCALING, // Harmonic scaling
TRANSFORM_ROTATION, // Harmonic rotation
TRANSFORM_WAVE, // Wave-based transformation
TRANSFORM_JITTERBUG, // Fuller's jitterbug transformation
TRANSFORM_RESONANCE, // Resonance-based transformation
TRANSFORM_DIMENSIONAL // Dimensional shift transformation
} harmonic_transform_t;
// Apply harmonic transformation
void applyHarmonicTransform(geometry_t* geometry,
harmonic_transform_t transform_type,
transform_params_t* params) {
// Prepare transformation
prepareHarmonicTransform(geometry, transform_type);
// Apply transformation based on type
switch (transform_type) {
case TRANSFORM_SCALING:
applyHarmonicScaling(geometry, params->scaling_factor);
break;
case TRANSFORM_ROTATION:
applyHarmonicRotation(geometry, params->rotation_angle,
params->rotation_plane);
break;
case TRANSFORM_WAVE:
applyHarmonicWave(geometry, params->wave_amplitude,
params->wave_frequency, params->wave_phase);
break;
case TRANSFORM_JITTERBUG:
applyJitterbugTransform(geometry, params->jitterbug_phase,
params->transformation_factor);
break;
case TRANSFORM_RESONANCE:
applyResonanceTransform(geometry, params->resonance_type,
params->resonance_frequency);
break;
case TRANSFORM_DIMENSIONAL:
applyDimensionalShift(geometry, params->target_dimension);
break;
}
// Post-process transformation
finalizeHarmonicTransform(geometry, transform_type);
}
Vector Field Operations
Operations that apply mathematical transformations to vector fields:
// Apply harmonic vector field operation
void applyVectorFieldOperation(vector_field_t* field, field_operation_t operation) {
// Get field dimensions
size_t width = field->width;
size_t height = field->height;
size_t depth = field->depth;
// For each vector in the field
for (size_t z = 0; z < depth; z++) {
for (size_t y = 0; y < height; y++) {
for (size_t x = 0; x < width; x++) {
// Get vector at position
vector_t* v = getVectorAt(field, x, y, z);
// Apply operation based on type
switch (operation.type) {
case FIELD_CURL:
applyCurlOperation(field, v, x, y, z);
break;
case FIELD_DIVERGENCE:
applyDivergenceOperation(field, v, x, y, z);
break;
case FIELD_GRADIENT:
applyGradientOperation(field, v, x, y, z);
break;
case FIELD_HARMONIC_FLOW:
applyHarmonicFlowOperation(field, v, x, y, z,
operation.params);
break;
case FIELD_RESONANCE_PATTERN:
applyResonancePatternOperation(field, v, x, y, z,
operation.resonance_type);
break;
}
}
}
}
// Normalize field if needed
if (operation.normalize) {
normalizeVectorField(field);
}
}
Geometry Morphing
Operations that morph between different geometric structures while preserving harmonic relationships:
// Morph between geometric structures
void morphGeometricStructures(geometry_t* source, geometry_t* target,
geometry_t* result, double morph_factor) {
// Validate structures
if (source->vertex_count != target->vertex_count) {
fprintf(stderr, "Error: Structures must have same vertex count\n");
return;
}
// Prepare result structure
initGeometryStructure(result, source->vertex_count);
// Determine optimal morphing path
morph_path_t path = determineMorphPath(source, target);
// Apply harmonic morphing
for (size_t i = 0; i < source->vertex_count; i++) {
// Get source and target vertices
vector_t* src_vertex = &source->vertices[i];
vector_t* tgt_vertex = &target->vertices[i];
// Apply harmonic interpolation based on path
switch (path.type) {
case MORPH_LINEAR:
// Simple linear interpolation
linearInterpolate(src_vertex, tgt_vertex,
&result->vertices[i], morph_factor);
break;
case MORPH_SPHERICAL:
// Spherical interpolation (SLERP)
sphericalInterpolate(src_vertex, tgt_vertex,
&result->vertices[i], morph_factor);
break;
case MORPH_HARMONIC:
// Harmonic interpolation based on golden ratio
harmonicInterpolate(src_vertex, tgt_vertex,
&result->vertices[i], morph_factor, PHI);
break;
case MORPH_JITTERBUG:
// Fuller jitterbug interpolation
jitterbugInterpolate(src_vertex, tgt_vertex,
&result->vertices[i], morph_factor);
break;
}
}
// Update result structure properties
result->structure_type = (morph_factor < 0.5) ?
source->structure_type : target->structure_type;
// Update topological properties
updateTopology(result);
}
Resonance Patterns
GeoMath identifies and leverages fundamental resonance patterns in geometric structures:
Geometric Resonance
Specific configurations where geometric structures exhibit heightened stability or coherence:
// Define geometric resonance types
typedef enum {
RESONANCE_PHI, // Golden ratio resonance
RESONANCE_PI, // Pi-based circular resonance
RESONANCE_SQRT2, // Sqrt2-based diagonal resonance
RESONANCE_SQRT3, // Sqrt3-based triangular resonance
RESONANCE_COMPOSITE // Composite resonance pattern
} resonance_type_t;
// Calculate resonance strength at given point
double calculateResonanceStrength(geometry_t* geometry,
vector_t* point,
resonance_type_t resonance_type) {
double strength = 0.0;
// Calculate base resonance value
switch (resonance_type) {
case RESONANCE_PHI:
strength = calculatePhiResonance(geometry, point);
break;
case RESONANCE_PI:
strength = calculatePiResonance(geometry, point);
break;
case RESONANCE_SQRT2:
strength = calculateSqrt2Resonance(geometry, point);
break;
case RESONANCE_SQRT3:
strength = calculateSqrt3Resonance(geometry, point);
break;
case RESONANCE_COMPOSITE:
// Weighted combination of resonance types
strength = 0.4 * calculatePhiResonance(geometry, point) +
0.3 * calculatePiResonance(geometry, point) +
0.2 * calculateSqrt2Resonance(geometry, point) +
0.1 * calculateSqrt3Resonance(geometry, point);
break;
}
return strength;
}
Harmonic Nodes
Points of maximum resonance within geometric systems:
// Find harmonic nodes in geometry
node_set_t* findHarmonicNodes(geometry_t* geometry,
resonance_type_t resonance_type,
double threshold) {
// Create node set
node_set_t* nodes = createNodeSet();
// Get geometry bounding box
bounding_box_t bounds = calculateBoundingBox(geometry);
// Sample points within bounding box
const size_t SAMPLES_PER_DIMENSION = 10;
vector_t sample_point;
for (size_t z = 0; z < SAMPLES_PER_DIMENSION; z++) {
sample_point.z = bounds.min.z + (bounds.max.z - bounds.min.z) *
((double)z / (SAMPLES_PER_DIMENSION - 1));
for (size_t y = 0; y < SAMPLES_PER_DIMENSION; y++) {
sample_point.y = bounds.min.y + (bounds.max.y - bounds.min.y) *
((double)y / (SAMPLES_PER_DIMENSION - 1));
for (size_t x = 0; x < SAMPLES_PER_DIMENSION; x++) {
sample_point.x = bounds.min.x + (bounds.max.x - bounds.min.x) *
((double)x / (SAMPLES_PER_DIMENSION - 1));
// Calculate resonance strength at this point
double strength = calculateResonanceStrength(
geometry, &sample_point, resonance_type);
// If above threshold, add to node set
if (strength >= threshold) {
harmonic_node_t* node = createHarmonicNode();
node->position = sample_point;
node->strength = strength;
node->resonance_type = resonance_type;
addNodeToSet(nodes, node);
}
}
}
}
// Refine node positions for maximum resonance
refineNodePositions(nodes, geometry, resonance_type);
return nodes;
}
Wave Interference Patterns
Complex patterns formed by the interference of harmonic waves in geometric space:
// Generate harmonic wave interference pattern
wave_pattern_t* generateWaveInterferencePattern(
wave_params_t* waves, size_t wave_count,
vector3d_t volume_min, vector3d_t volume_max,
size_t resolution) {
// Create wave pattern
wave_pattern_t* pattern = createWavePattern(resolution);
// Calculate cell size
double cell_size_x = (volume_max.x - volume_min.x) / resolution;
double cell_size_y = (volume_max.y - volume_min.y) / resolution;
double cell_size_z = (volume_max.z - volume_min.z) / resolution;
// For each point in the volume
for (size_t z = 0; z < resolution; z++) {
double z_pos = volume_min.z + z * cell_size_z;
for (size_t y = 0; y < resolution; y++) {
double y_pos = volume_min.y + y * cell_size_y;
for (size_t x = 0; x < resolution; x++) {
double x_pos = volume_min.x + x * cell_size_x;
// Create position vector
vector3d_t pos = {x_pos, y_pos, z_pos};
// Calculate combined wave amplitude at this point
double amplitude = 0.0;
for (size_t i = 0; i < wave_count; i++) {
// Calculate distance from wave source
double distance = calculateDistance(&pos, &waves[i].source);
// Calculate wave phase
double phase = distance * waves[i].frequency;
// Add wave contribution
amplitude += waves[i].amplitude *
sin(phase * 2.0 * PI + waves[i].phase_offset);
}
// Store amplitude in pattern
setPatternValue(pattern, x, y, z, amplitude);
}
}
}
return pattern;
}
Vector Forms
GeoMath implements a sophisticated system of vector forms that represent geometric structures:
Vector Form Representation
Mathematical representation of geometric structures as vector forms:
// Define vector form structure
typedef struct {
uint32_t dimension; // Form dimension
uint32_t vector_count; // Number of vectors
vector_t* vectors; // Array of vectors
uint32_t* connectivity; // Connectivity information
form_type_t type; // Type of vector form
form_properties_t properties; // Form properties
} vector_form_t;
// Create vector form from geometry
vector_form_t* createVectorForm(geometry_t* geometry) {
// Allocate vector form
vector_form_t* form = (vector_form_t*)malloc(sizeof(vector_form_t));
// Set basic properties
form->dimension = geometry->dimension;
form->vector_count = geometry->vertex_count;
// Allocate and copy vectors
form->vectors = (vector_t*)malloc(form->vector_count * sizeof(vector_t));
memcpy(form->vectors, geometry->vertices,
form->vector_count * sizeof(vector_t));
// Set up connectivity based on geometry type
setupConnectivity(form, geometry);
// Determine form type
form->type = determineFormType(geometry);
// Calculate form properties
calculateFormProperties(form);
return form;
}
Vector Flow
Dynamic flows of vectors that transform geometric structures:
// Define vector flow structure
typedef struct {
vector_field_t* field; // Vector field
flow_type_t type; // Type of flow
double flow_rate; // Flow rate
double time; // Current flow time
flow_params_t params; // Flow parameters
} vector_flow_t;
// Update vector flow
void updateVectorFlow(vector_flow_t* flow, double delta_time) {
// Update flow time
flow->time += delta_time * flow->flow_rate;
// Update field based on flow type
switch (flow->type) {
case FLOW_CURL:
updateCurlFlow(flow->field, flow->time, flow->params);
break;
case FLOW_DIVERGENCE:
updateDivergenceFlow(flow->field, flow->time, flow->params);
break;
case FLOW_HARMONIC:
updateHarmonicFlow(flow->field, flow->time, flow->params);
break;
case FLOW_SPIRAL:
updateSpiralFlow(flow->field, flow->time, flow->params);
break;
case FLOW_JITTERBUG:
updateJitterbugFlow(flow->field, flow->time, flow->params);
break;
}
// Normalize field if needed
if (flow->params.normalize) {
normalizeVectorField(flow->field);
}
}
Form Transformations
Transformations between different vector forms:
// Transform between vector forms
vector_form_t* transformVectorForm(vector_form_t* source,
form_type_t target_type,
transform_params_t* params) {
// Create target vector form
vector_form_t* target = createEmptyVectorForm(
source->dimension, source->vector_count);
// Determine transformation type
transform_type_t transform_type = determineTransformationType(
source->type, target_type);
// Apply transformation
switch (transform_type) {
case TRANSFORM_OCTAHEDRAL_TO_ICOSAHEDRAL:
transformOctahedralToIcosahedral(source, target, params);
break;
case TRANSFORM_ICOSAHEDRAL_TO_OCTAHEDRAL:
transformIcosahedralToOctahedral(source, target, params);
break;
case TRANSFORM_OCTAHEDRAL_TO_TETRAHEDRAL:
transformOctahedralToTetrahedral(source, target, params);
break;
case TRANSFORM_TETRAHEDRAL_TO_OCTAHEDRAL:
transformTetrahedralToOctahedral(source, target, params);
break;
case TRANSFORM_DIMENSIONAL_SHIFT:
transformDimensionalShift(source, target, params);
break;
default:
// Generic transformation
transformGeneric(source, target, params);
break;
}
// Set target form type
target->type = target_type;
// Calculate target form properties
calculateFormProperties(target);
return target;
}
Implementation Guide
GeoMath API
The GeoMath API provides interfaces for working with harmonic mathematics of space:
// Initialize GeoMath system
GeoMath* geomath_init() {
GeoMath* gm = (GeoMath*)malloc(sizeof(GeoMath));
// Initialize constants
gm->constants.phi = 1.618033988749895;
gm->constants.pi = 3.14159265358979;
gm->constants.sqrt2 = 1.4142135623731;
gm->constants.sqrt3 = 1.73205080756888;
gm->constants.sqrt6 = 2.449489742783178;
// Initialize transformation system
gm->transformations = initTransformationSystem();
// Initialize vector form system
gm->vector_forms = initVectorFormSystem();
// Initialize resonance system
gm->resonance = initResonanceSystem();
// Set default configuration
gm->default_dimension = 3;
gm->default_resonance_type = RESONANCE_PHI;
return gm;
}
// Create geometric structure
geometry_t* geomath_createGeometry(GeoMath* gm, geometry_type_t type) {
geometry_t* geometry = NULL;
// Create geometry based on type
switch (type) {
case GEOMETRY_OCTAHEDRON:
geometry = createOctahedron(gm);
break;
case GEOMETRY_ICOSAHEDRON:
geometry = createIcosahedron(gm);
break;
case GEOMETRY_TETRAHEDRON:
geometry = createTetrahedron(gm);
break;
case GEOMETRY_CUBOCTAHEDRON:
geometry = createCuboctahedron(gm);
break;
case GEOMETRY_DODECAHEDRON:
geometry = createDodecahedron(gm);
break;
case GEOMETRY_RHOMBIC_DODECAHEDRON:
geometry = createRhombicDodecahedron(gm);
break;
}
return geometry;
}
// Apply harmonic transformation
void geomath_applyTransformation(GeoMath* gm, geometry_t* geometry,
transform_type_t transform_type,
transform_params_t* params) {
// Validate geometry
if (!geometry) {
fprintf(stderr, "Error: Invalid geometry\n");
return;
}
// Apply transformation based on type
applyHarmonicTransform(geometry, transform_type, params);
// Update geometry properties
updateGeometryProperties(geometry);
}
// Calculate resonance pattern
resonance_pattern_t* geomath_calculateResonance(GeoMath* gm, geometry_t* geometry,
resonance_type_t resonance_type) {
// Create resonance pattern
resonance_pattern_t* pattern = createResonancePattern(geometry);
// Calculate resonance values
calculateResonancePattern(pattern, geometry, resonance_type);
return pattern;
}
// Create vector form
vector_form_t* geomath_createVectorForm(GeoMath* gm, geometry_t* geometry) {
// Create vector form from geometry
return createVectorForm(geometry);
}
Using Different Resonance Patterns
GeoMath supports multiple resonance patterns for different applications:
Resonance Type | Primary Constant | Best For | Usage Example |
---|---|---|---|
Phi Resonance | Golden Ratio (φ) | Natural patterns, growth sequences | Spiral structures, organic forms |
Pi Resonance | π | Circular patterns, wave phenomena | Oscillating systems, sound waves |
Sqrt2 Resonance | √2 | Cubic structures, grid systems | Urban planning, architectural layouts |
Sqrt3 Resonance | √3 | Triangular structures, 3-fold symmetry | Molecular structures, crystals |
Composite Resonance | Multiple constants | Complex systems, hybrid structures | Biological systems, adaptive networks |
Performance Optimization
For optimal GeoMath performance:
- Resonance Caching: Cache resonance patterns for frequently used geometries
- Transformation Precomputation: Precompute common transformations for reuse
- Resolution Control: Adjust resonance calculation resolution based on need
- Batch Processing: Process multiple geometric operations in batches
- Dimension Optimization: Use the minimum necessary dimensions for operations
// Optimize GeoMath performance
void optimizeGeoMathPerformance(GeoMath* gm) {
// Enable resonance caching
gm->cache_resonance = true;
gm->resonance_cache_size = 64;
gm->resonance_cache = createResonanceCache(gm->resonance_cache_size);
// Precompute common transformations
gm->precompute_transformations = true;
precomputeCommonTransformations(gm);
// Set resonance resolution based on performance need
gm->resonance_resolution = RESONANCE_RESOLUTION_MEDIUM;
// Enable batch processing
gm->batch_size = 32;
gm->batch_buffer = allocateBatchBuffer(gm->batch_size);
// Configure dimension optimization
gm->optimize_dimensions = true;
gm->min_working_dimension = 3;
// Initialize optimization subsystem
initOptimizationSubsystem(gm);
}
Integration with DragonFire Ecosystem
GeoMath integrates with other DragonFire components to provide harmonic mathematical capabilities:
GeoCode Integration
GeoMath builds on GeoCode's encoded geometry to apply harmonic operations:
// Integrate GeoMath with GeoCode
void integrateWithGeoCode(GeoMath* gm, GeoCode* gc) {
// Connect GeoMath's harmonic operations to GeoCode's bit encodings
gm->bit_encoder = gc;
// Set up geometric encoding functions
gm->encode_geometry = gc->convert_to_bits;
gm->decode_geometry = gc->create_from_bits;
// Map GeoMath's harmonic spaces to GeoCode's geometric structures
mapHarmonicSpacesToGeometries(gm, gc);
// Set up transformation mapping
setupTransformationMapping(gc, gm);
}
4D Mathematics Integration
GeoMath works with 4D Mathematics for higher-dimensional operations:
// Integrate GeoMath with 4D Mathematics
void integrateWith4DMath(GeoMath* gm, FourDMath* math) {
// Connect GeoMath's harmonic operations to 4D Math's transformations
gm->math_library = math;
// Set up 4D rotation functions
gm->rotate_4d = math->rotate_vector;
// Map GeoMath's harmonic spaces to 4D Math's vector spaces
mapHarmonicSpacesToVectorSpaces(gm, math);
// Set up transformation conversions
setupTransformationConversions(gm, math);
// Initialize higher dimensional operations
initHigherDimensionalOperations(gm, math);
}
DragonHeart Integration
GeoMath provides the mathematical foundation for DragonHeart's harmonic processing:
// Integrate GeoMath with DragonHeart
void integrateWithDragonHeart(GeoMath* gm, DragonHeart* heart) {
// Connect GeoMath's resonance patterns to DragonHeart's processing
heart->geomath = gm;
// Set up harmonic constants
heart->phi = gm->constants.phi;
heart->pi = gm->constants.pi;
heart->sqrt2 = gm->constants.sqrt2;
heart->sqrt3 = gm->constants.sqrt3;
// Map resonance patterns to processing modes
mapResonancesToProcessingModes(gm, heart);
// Set up harmonic transformation functions
setupHarmonicTransformations(gm, heart);
}
Unified Mathematical Framework
GeoMath provides a unified harmonic mathematical framework across the DragonFire ecosystem:
Key Integration Insight: GeoMath serves as the mathematical soul of the DragonFire ecosystem, providing harmonic mathematical operations that preserve beauty and coherence across transformations. While GeoCode encodes geometric structures and 4D Mathematics handles higher-dimensional operations, GeoMath ensures that all mathematical operations maintain harmonic relationships and resonance patterns, creating a coherent mathematical framework across the entire system.
Examples
Basic GeoMath Usage
#include "geomath.h"
int main() {
// Initialize GeoMath
GeoMath* gm = geomath_init();
// Create octahedron geometry
geometry_t* octahedron = geomath_createGeometry(gm, GEOMETRY_OCTAHEDRON);
printf("Created octahedron with %d vertices\n", octahedron->vertex_count);
// Configure transformation parameters
transform_params_t params;
params.transform_type = TRANSFORM_SCALING;
params.scaling_factor = gm->constants.phi; // Golden ratio scaling
// Apply harmonic transformation
geomath_applyTransformation(gm, octahedron, TRANSFORM_SCALING, ¶ms);
printf("Applied phi scaling transformation\n");
// Calculate resonance pattern
resonance_pattern_t* pattern = geomath_calculateResonance(
gm, octahedron, RESONANCE_PHI);
printf("Calculated phi resonance pattern with %d nodes\n",
pattern->node_count);
// Create vector form
vector_form_t* form = geomath_createVectorForm(gm, octahedron);
printf("Created vector form with dimension %d\n", form->dimension);
// Free resources
geomath_freeResonancePattern(gm, pattern);
geomath_freeVectorForm(gm, form);
geomath_freeGeometry(gm, octahedron);
geomath_free(gm);
return 0;
}
Harmonic Transformation Example
// Demonstrate harmonic transformations
void demonstrateHarmonicTransformations() {
// Initialize GeoMath
GeoMath* gm = geomath_init();
// Create octahedron geometry
geometry_t* geometry = geomath_createGeometry(gm, GEOMETRY_OCTAHEDRON);
printf("Created octahedron with %d vertices\n", geometry->vertex_count);
// Configure jitterbug transformation parameters
transform_params_t params;
params.transform_type = TRANSFORM_JITTERBUG;
params.jitterbug_phase = JITTERBUG_ICOSAHEDRON;
params.transformation_factor = 0.5; // 50% transformation
// Apply jitterbug transformation
geomath_applyTransformation(gm, geometry, TRANSFORM_JITTERBUG, ¶ms);
printf("Applied jitterbug transformation to icosahedron (50%%)\n");
printf("Resulting structure has %d vertices\n", geometry->vertex_count);
// Calculate geometry properties
geometry_properties_t props;
geomath_calculateGeometryProperties(gm, geometry, &props);
printf("Geometry properties:\n");
printf("- Volume: %.2f\n", props.volume);
printf("- Surface area: %.2f\n", props.surface_area);
printf("- Symmetry groups: %d\n", props.symmetry_groups);
printf("- Harmonic coefficient: %.4f\n", props.harmonic_coefficient);
// Calculate phi resonance at center
vector_t center = {0, 0, 0};
double resonance = geomath_calculateResonanceAtPoint(
gm, geometry, ¢er, RESONANCE_PHI);
printf("Phi resonance at center: %.4f\n", resonance);
// Free resources
geomath_freeGeometry(gm, geometry);
geomath_free(gm);
}
Vector Form Example
// Demonstrate vector forms
void demonstrateVectorForms() {
// Initialize GeoMath
GeoMath* gm = geomath_init();
// Create icosahedron geometry
geometry_t* icosahedron = geomath_createGeometry(gm, GEOMETRY_ICOSAHEDRON);
printf("Created icosahedron geometry\n");
// Create vector form
vector_form_t* form = geomath_createVectorForm(gm, icosahedron);
printf("Created vector form with %d vectors\n", form->vector_count);
// Configure vector flow
flow_params_t flow_params;
flow_params.type = FLOW_SPIRAL;
flow_params.rate = 0.5;
flow_params.center.x = 0;
flow_params.center.y = 0;
flow_params.center.z = 0;
flow_params.normalize = true;
// Create vector flow
vector_flow_t* flow = geomath_createVectorFlow(gm, form, &flow_params);
printf("Created spiral vector flow\n");
// Simulate flow for 10 steps
for (int i = 0; i < 10; i++) {
// Update flow
geomath_updateVectorFlow(gm, flow, 0.1); // 0.1 second delta time
// Update form from flow
geomath_updateFormFromFlow(gm, form, flow);
printf("Updated flow step %d\n", i + 1);
// Calculate form energy
double energy = geomath_calculateFormEnergy(gm, form);
printf("Form energy: %.4f\n", energy);
}
// Transform form to octahedral type
transform_params_t params;
params.transform_type = TRANSFORM_FORM;
params.target_form_type = FORM_OCTAHEDRAL;
params.transformation_factor = 1.0;
vector_form_t* transformed = geomath_transformVectorForm(
gm, form, ¶ms);
printf("Transformed to octahedral form\n");
// Free resources
geomath_freeVectorFlow(gm, flow);
geomath_freeVectorForm(gm, form);
geomath_freeVectorForm(gm, transformed);
geomath_freeGeometry(gm, icosahedron);
geomath_free(gm);
}
View more examples in our SDK Examples section or try the Interactive GeoMath Demo.
Next Steps
- Explore the complete GeoMath API Reference
- Download the GeoMath SDK
- Try the Interactive GeoMath Demo
- Learn about GeoCode for encoded geometry as symbolic logic
- Explore 4D Mathematics for higher-dimensional operations